
PROJECTS
JavaScript

98 december 2015

As soon as I began playing around with
AngularJS, it struck me that its ability to grab

data and use it directly in markup could offer great
possibilities for data visualisation. This approach
could present a really quick and simple way to create
data visualisations from scratch, rather than having
to rely on a separate library.

In this tutorial we will start to build a data
dashboard for a web app – in this case a RunKeeper
clone called ‘JogTracker’. We will progress from using
Angular values in HTML style, to inline SVG, before
utilising the conic-gradient() polyfill.

For me, the most appealing part of this technique
is that you can start building data visualisations
with even the most limited JavaScript knowledge.
We will be largely using our script file to hold data,

so if you can write JavaScript objects, you will
be well on your way.

APP SETUP
For this prototype I am going to let Bootstrap do
the heavy lifting when it comes to style and layout,
so we can focus on the Angular-specific code. I will
assume you have included the Angular library in
your HTML, and have set up and linked your Angular
app (see the example code at netm.ag/angularcode-274
for details on how to do this, if needed).

We are now going to create the data structure
for our JogTracker application. We’ll keep this
really simple, with each ‘jog’ stored as an object
with a time , distance and date property. We’ll store
these objects in an array called $scope.data – $scope

 BUILD A DATA DASHBOARD
WITH ANGULARJS
Nick Moreton shows you how using AngularJSshows you how using AngularJSshows you how using Angular values directly
in your HTML can make building data visualisations fast and fun

 JAVASCRIPT

 V IDEO
Nick Moreton has
created an exclusive
screencast to go with
this tutorial. Watch
along at netm.ag/
angularvid-274

ABOU T T HE AU THOR

NICK MORE TON
w: codepen.io/nickmoreton
t: @ngmoreton
job: Lecturer, Birmingham
City University
areas of expertise:
 HTML, CSS, JavaScript,
AngularJS, WordPress
q: what gadget would you
have trouble parting with?
a: I have a four-track tape
recorder that hasn’t been
used in over 15 years. I just
can’t bear to throw it away!

View source
files here!

All the files you need for
this tutorial can be found at

netm.ag/angularcode-274

NET274.tut_angular.indd 98 9/30/15 2:45 PM

 december 2015 99

JavaScript

allows us to access this data directly from inside our
controller in the HTML.

$scope.data = [{
 distance: 3.24,
 time: 34,
 date: new Date("May 01, 2015"),
 }, // And so on...
]

In order to create my visualisations I also need to
know the maximum values for time and distance.
This can be done for each with a short piece
of JavaScript:

$scope.maxDistance = Math.max.apply(Math, $scope.data.
map(function(jog) {
 return jog.distance;
 }))

I can then do the same to find the maximum time.
Now I have all my data stored and accessible from
my HTML, that’s it for JavaScript!

BAR CHART
The main visualisation I am going to create is a
bar chart showing the last 10 jogs from my data,
with a bar for both distance and time. Accessibility
is important, so in the HTML I will create a table
that contains the data, and use CSS to convert this
visually to a bar chart.

Pie charts are notoriously tough to code. However, we
can use Angular combined with conic-gradient (netm.ag/

conic-274) – a new CSS polyfill that enables circular gradients –
to create them.

<div class="pie" style="background: conic-gradient(
 yellowgreen 30%,
 gold 0 60%,
 navy 0 100%);
</div>

You specify the colour, blur and percentage of the circle taken up
by each section. Remember that the percentages are cumulative,
so, visually, the above code would show the first 30 per cent of the
pie chart yellow-green, the next 30 per cent (60 per cent minus the
first 30 per cent) as gold, and the final 40 per cent as navy. Knowing
this, and knowing we can use arithmetic in our Angular values, we
can create dynamic pie charts based on our data. In my JavaScript
I run a loop to count the total number of jogs, and also determine
what day each jog took place on, storing those counts in variables
named after each day.

$scope.total = 17
$scope.monday = 3 // And so on..

My conic-gradient value then looks like this:

yellowgreen {{monday / total * 100}}%,
gold 0 {{(monday + tuesday) / total * 100}}%,
<!-- And so on until... -->
navy 0 {{(monday + tuesday + wednesday + thursday + friday +
saturday + sunday) / total * 100}}%

I simply add all of the values as I go, divide them by the total and
multiply by 100 to get my percentage for each colour.

PIE CHARTS
 IN-DEPTH

Data tracking Like many fitness tracking applications, one of the most
popular parts of Runkeeper is the ability to track your data

AngularJS’ ability to
grab data and use it
directly in markup
off ers great possibilities
for data visualisation

NET274.tut_angular.indd 99 9/30/15 2:45 PM

PROJECTS
JavaScript

100 december 2015

To begin, I will leverage the ng-repeat functionality
of Angular to loop through my $scope.data array and
spit the data out into a table.

<table class="bar-chart">
 <tr ng-repeat="jog in data | limitTo:-10">
 <td> {{jog.date | date}} </td>
 <td> {{jog.time | number}} Minutes </td>
 <td> {{jog.distance | number}} Miles </td>
 </tr>
</table>

This will create a table row for each entry in the
data. I declare the individual name for each entry as
 jog . This enables me to access the properties of that
object, such as jog.distance .

I have also utilised some Angular filters using | .
In the ng-repeat attribute, the limitTo filter allows you
to limit the number of entries shown. A value of 10
will show the first 10 entries, however I want to show
the last 10. For this I set the limitTo to -10 .

We now have an accessible table showing our data.
Let’s turn it into a bar chart. Firstly, we need to set
up some CSS to override the appearance of our table.

.bar-chart {
 display: block;
 height: 300px;
 position: relative;
 border-left: 1px solid #668284;
 border-bottom: 1px solid #668284;
}
.bar-chart td {
 position: absolute;
 width: 20px;
 bottom: 0;
}

This turns both the table and the cell into block
elements, adds a border to show an X and Y
axis, and sets up positioning and width on the
cells that will become our bars. We set absolute
positioning as we are going to use some Angular
magic to space the bars out along our chart using
the left property.

I also set up some classes for each bar, in order
to give them a background colour and offset their
position. The .legend cell will show the date below
the bars, so has been positioned as such. .time will
sit next to the .distance bar, so has been nudged
along with some margin.

.bar-chart .legend {
 bottom: -40px;
}

SVG LINE GRAPH

We can use Angular values anywhere in our HTML markup,
and this includes inline SVG. An example of this in our app

would be creating a line graph showing the progression of a user’s
distance over time.

I give my <svg> a height of 200px in my CSS, and add a stroke
width and colour to the <line> element. Now, in my markup, I use
 ng-repeat to output a <line> for every entry:

<svg>
 <line ng-repeat="jog in data"
 x1="{{($index – 1) / data.length * 100}}%"
 x2="{{$index / data.length * 100}}%"
 y1="{{data[$index – 1].distance / maxDistance * 200}}"
 y2="{{jog.distance / maxDistance * 200}}">
 </line>
</svg>

Each <line> has a start (x1 and y1) and end point (x2 and y2)
for both axes. For my X axis I want to position the lines using a
percentage of the width. I again use $index , but this time I need
two values, so I remove one from the $index value for my start
point, and use the original $index value for my end point. This
means each line starts where the previous line ends.

For my Y axis I need to do a similar thing, but with my distance
value from each object. I can access previous values in my $scope.
 data array the same way I would in JavaScript – data[$index]
is the current entry in our ng-repeat loop, data[$index-1] is the
previous entry. I then divide this value by the maximum and times
by the height, just like in the bar chart, to position the lines
vertically.

 FOCUS ON

NET274.tut_angular.indd 100 9/30/15 2:45 PM

 december 2015 101

JavaScript

.bar-chart .distance {
 background: #B9D7D9;
}

.bar-chart .time {
 background: #668284;
 margin-left: 30px;
}

There are plenty of extra stylistic touches, such
as rotating text along the bars, so please see the
example project for full code. OK, now to dig into
the Angular magic in our HTML!

<td ng-style="{ left:$index * 10 +'%' }" class="legend" >
{{jog | date}}
</td>
<td ng-style="{ left:$index * 10 +'%', height: (jog.time /
maxTime) * 300 + 'px' }" class="time">
 {{jog.time | number}} Minutes
</td>
<td ng-style="{ left:$index * 10 +'%', height: (jog.distance /
maxDistance) * 300 + 'px' }" class="distance" ng-class="{
'highlight' : jog.distance === maxDistance }">
 {{jog.distance}} Miles
</td>

The key part of creating the chart is the ng-style
attribute that applies styling using Angular data
values. Styling in ng-style is written like an object
with key value pairs. You can also pass arithmetic
and mix numbers and strings here.

First let’s look at the left value, which is
the same on all the cells. I want to arrange my 10
bars out evenly across the width of my chart, so
will space them out in 10 per cent increments.

left:$index * 10 +'%'

To do this I utilise the $index value that Angular
assigns to all the entries in the ng-repeat , going
up from zero in increments of one, just like in a
JavaScript array. So if we run the maths, my first
cell will have a left value of: 0% – $index (0) x 10 (0)

+ ‘%’ (the unit as a string). My second cell in this
column will have a left value of 10 per cent, the next
20 per cent, and so on. I can also use maths to vary
the heights of my bars.

height: (jog.distance / maxDistance) * 300 + 'px'

Here I am taking the distance of my individual
jog and dividing it by the maximum distance in
the array. I then multiply this by 300 (the height
of my chart in px) and then add my unit of px
as a string.

If we consider what would happen with the longest
distance entry, the result of jog.distance / maxDistance
would be one (as they are the same number), which
would give a result of 300px. This means our largest
bar will always be the full height of the chart, and
the other bars will have heights relative to this.

Ideally, most of this logic would be moved to
our JavaScript, perhaps as a custom Angular filter,
making the HTML cleaner. However for ease of
understanding, at this stage we’ll use it directly
in the HTML.

The final piece of Angular data-vis magic is to
use the ng-class attribute to apply a class, based
on whether a condition is met. In this case, I want
to add a class of highlight to the longest jog, so I
add ng-class="{highlight:jog.distance === maxDistance}"
to my <td> element.

CONCLUSION
Our first Angular data visualisation is complete!
It isn’t only in style attributes that Angular values
can be used. We can use them inside inline SVG
and even utilise them inside polyfills such as
Lea Verou’s conic-gradient() to create more complex
visualisations.

The key part of creating
the chart is the ng-style
attribute that applies
styling using Angular
data values

Access issues As the
bar chart is a HTML table,
we can add table headers
just for screen readers for
accessibility

NET274.tut_angular.indd 101 9/30/15 2:45 PM

